Debye equation

the Debye equation links the macroscopically measurable size of dielectric constant <math> \ varepsilon_r< /math> with the microscopic (molecular) sizes of electrical polarizability <math> \ alpha< /math> and permanent dipole moment <math> \ mu< /math>.

<math> P_m = \ frac {\ varepsilon_r-1} {\ varepsilon_r+2} \ frac {M} {\ rho} = \ frac {N_A} {3 \ varepsilon_0} (\ alpha + \ frac {\ mu^2} {3 k T})< /math>

<math> P_m< /math> is the molecular polarization (their unit is a molecular volume, thus z. B. m 3 /mol), M is the molecular mass (kg/mol) and <math> \ rho< /math> is the density (kg/m 3).

The Debye equation combines the temperature-independent shift polarization and the temperature-dependent orientation polarization.

For nonpolar materials without permanent dipole moment (<math> \ mu=0< /math>, D. h. ) the equation changes only induced dipoles into the Clausius Mossotti equation .

see also

 

  > German to English > de.wikipedia.org (Machine translated into English)