# Sedenion

the Sedenionen (symbol [itex] \ mathbb S< /math>) are 16dimensionale hypercomplex numbers.

They result from the application of the doubling procedure from the Oktonionen.

The multiplication of the Sedenionen is neither commutative nor associative and isalso not alternatively. It is only power associative. Furthermore possesses the Sedenionen zero-divisors.

Each Sedenion is a real linear combination of the units 1, e 1, e 2, e 3, e 4, e 5, e 6, e 7, e 8, e 9, e 10, e 11, e 12, e 13, e 14 and e 15.

The multiplication board of the units is:

 ×< /td> 1< /td> e 1< /td> e 2< /td> e 3< /td> e 4< /td> e 5< /td> e 6< /td> e 7< /td> e 8< /td> e 9< /td> e 10< /td> e 11< /td> e 12< /td> e 13< /td> e 14< /td> e 15< /td> < /tr> 1< /td> 1< /td> e 1< /td> e 2< /td> e 3< /td> e 4< /td> e 5< /td> e 6< /td> e 7< /td> e 8< /td> e 9< /td> e 10< /td> e 11< /td> e 12< /td> e 13< /td> e 14< /td> e 15< /td> e 1< /td> e 1< /td> -1< /td> e 3< /td> - e 2< /td> e 5< /td> - e 4< /td> - e 7< /td> e 6< /td> e 9< /td> - e 8< /td> - e 11< /td> e 10< /td> - e 13< /td> e 12< /td> e 15< /td> - e 14< /td> e 2< /td> e 2< /td> - e 3< /td> -1< /td> e 1< /td> e 6< /td> e 7< /td> - e 4< /td> - e 5< /td> e 10< /td> e 11< /td> - e 8< /td> - e 9< /td> - e 14< /td> - e 15< /td> e 12< /td> e 13< /td> e 3< /td> e 3< /td> e 2< /td> - e 1< /td> -1< /td> e 7< /td> - e 6< /td> e 5< /td> - e 4< /td> e 11< /td> - e 10< /td> e 9< /td> - e 8< /td> - e 15< /td> e 14< /td> - e 13< /td> e 12< /td> e 4< /td> e 4< /td> - e 5< /td> - e 6< /td> - e 7< /td> -1< /td> e 1< /td> e 2< /td> e 3< /td> e 12< /td> e 13< /td> e 14< /td> e 15< /td> - e 8< /td> - e 9< /td> - e 10< /td> - e 11< /td> e 5< /td> e 5< /td> e 4< /td> - e 7< /td> e 6< /td> - e 1< /td> -1< /td> - e 3< /td> e 2< /td> e 13< /td> - e 12< /td> e 15< /td> - e 14< /td> e 9< /td> - e 8< /td> e 11< /td> - e 10< /td> e 6< /td> e 6< /td> e 7< /td> e 4< /td> - e 5< /td> - e 2< /td> e 3< /td> -1< /td> - e 1< /td> e 14< /td> - e 15< /td> - e 12< /td> e 13< /td> e 10< /td> - e 11< /td> - e 8< /td> e 9< /td> e 7< /td> e 7< /td> - e 6< /td> e 5< /td> e 4< /td> - e 3< /td> - e 2< /td> e 1< /td> -1< /td> e 15< /td> e 14< /td> - e 13< /td> - e 12< /td> e 11< /td> e 10< /td> - e 9< /td> - e 8< /td> e 8< /td> e 8< /td> - e 9< /td> - e 10< /td> - e 11< /td> - e 12< /td> - e 13< /td> - e 14< /td> - e 15< /td> -1< /td> e 1< /td> e 2< /td> e 3< /td> e 4< /td> e 5< /td> e 6< /td> e 7< /td> e 9< /td> e 9< /td> e 8< /td> - e 11< /td> e 10< /td> - e 13< /td> e 12< /td> e 15< /td> - e 14< /td> - e 1< /td> -1< /td> - e 3< /td> e 2< /td> - e 5< /td> e 4< /td> e 7< /td> - e 6< /td> e 10< /td> e 10< /td> e 11< /td> e 8< /td> - e 9< /td> - e 14< /td> - e 15< /td> e 12< /td> e 13< /td> - e 2< /td> e 3< /td> -1< /td> - e 1< /td> - e 6< /td> - e 7< /td> e 4< /td> e 5< /td> e 11< /td> e 11< /td> - e 10< /td> e 9< /td> e 8< /td> - e 15< /td> e 14< /td> - e 13< /td> e 12< /td> - e 3< /td> - e 2< /td> e 1< /td> -1< /td> - e 7< /td> e 6< /td> - e 5< /td> e 4< /td> e 12< /td> e 12< /td> e 13< /td> e 14< /td> e 15< /td> e 8< /td> - e 9< /td> - e 10< /td> - e 11< /td> - e 4< /td> e 5< /td> e 6< /td> e 7< /td> -1< /td> - e 1< /td> - e 2< /td> - e 3< /td> e 13< /td> e 13< /td> - e 12< /td> e 15< /td> - e 14< /td> e 9< /td> e 8< /td> e 11< /td> - e 10< /td> - e 5< /td> - e 4< /td> e 7< /td> - e 6< /td> e 1< /td> -1< /td> e 3< /td> - e 2< /td> e 14< /td> e 14< /td> - e 15< /td> - e 12< /td> e 13< /td> e 10< /td> - e 11< /td> e 8< /td> e 9< /td> - e 6< /td> - e 7< /td> - e 4< /td> e 5< /td> e 2< /td> - e 3< /td> -1< /td> e 1< /td> e 15< /td> e 15< /td> e 14< /td> - e 13< /td> - e 12< /td> e 11< /td> e 10< /td> - e 9< /td> e 8< /td> - e 7< /td> e 6< /td> - e 5< /td> - e 4< /td> e 3< /td> e 2< /td> - e 1< /td> -1< /td>